2365

The Structure of 1,6:8,13-Butane-1,4-diylidene[14]annulene

BY CARLO M. GRAMACCIOLI, ANGELO MUGNOLI, TULLIO PILATI, MARIO RAIMONDI AND MASSIMO SIMONETTA

Istituto di Chimica Fisica e Centro C.N.R., Via Saldini 50, 20133 Milano, Italy

(Received 13 March 1972)

The crystal and molecular structure of 1,6:8,13-butane-1,4-diylidene[14]annulene has been determined and refined by least-squares methods. The crystals are orthorhombic, space group *Fmm2*, with a=18:034, $b=11\cdot399$, $c=6\cdot059$ Å and four molecules per unit cell. Intensity data for 424 reflexions were collected on a PAILRED diffractometer from crystals mounted along the c and the a axes. The final R index for 407 reflexions included in the least squares is 0.045; the average standard deviations in the atomic positions are about 0.003 Å for C atoms and 0.03 Å for H atoms. The aromatic behaviour of the compound agrees with the observed restricted misalignment between adjacent p_z orbitals along the annulene perimeter; in comparison with the corresponding propane derivative, the introduction of a further carbon atom in the aliphatic chain has negligible effects upon bond lengths in the annulene ring.

Introduction

It has been found (Vogel, Biskup, Vogel & Günther, 1966; Vogel & Günther, 1967; Vogel, Vogel, Kübbeler & Sturm, 1970; Vogel, Sturm & Cremer, 1970) that 4n+2 bridged annulenes can show aromatic behaviour in spite of the distortion imposed by the bridges upon the annulene ring. In particular, for *syn*-bridged [14]annulenes (Ganis & Dunitz, 1966; Casalone, Gavezzotti, Mugnoli & Simonetta, 1970; Gavezzotti, Mugnoli, Raimondi & Simonetta, 1972) the molecular symmetry is close to *mm*2 and the bond distances along the ring are all near to the benzenic value.

On the other hand, *anti*-bridged [14]annulenes, which have olefinic reactivity, show a systematic succession of 'longer' and 'shorter' bonds along the ring and a molecular symmetry close to *m* (Barrow & Mills, 1971; Gramaccioli, Mimun, Mugnoli & Simonetta, 1971). In 1,6:8,13-butane-1,4-diylidene[14]annulene, the strain imposed on the annulene ring is very severe, but this does not affect its chemical aromatic behaviour (Vogel, Sturm & Cremer, 1970).

In order to answer this problem in terms of molecular geometry and conformation, we have undertaken the study of the crystal structure of this compound. Preliminary results have been collected in a short communication (Gramaccioli, Mugnoli, Pilati, Raimondi & Simonetta, 1971).

Experimental

Crystals of 1,6:8,13-butane-1,4-diylidene[14]annulene (here onwards BUT) are in the form of orange needles,* elongated along c. Weissenberg photographs indicated them to be orthorhombic, in space group *Fmm2*, *Fmmm*, or *F222* (the systematic absences being only

due to the presence of the *F*-centred lattice); the first space group was confirmed by solution of the structure.

The unit-cell dimensions (see Table 1) were obtained from a least-squares fit to measurements of $\sin^2 \theta$ for 40 hk0 and 24 0kl reflexions on zero-level Weissenberg photographs taken at 21 °C with Cu K α radiation; the film was held in the asymmetric position, following the Straumanis technique. No corrections for eccentricity or absorption were included in least-squares calculations, and weights were assigned as inversely proportional to $\sin^2 2\theta$. The density was measured by flotation in a dilute K₂HgI₄ solution.

Table 1. Crystal data

C ₁₈ H ₁₆ Orthorhombic $a = 18.034 \pm 0.003$ Å $b = 11.399 \pm 0.001$ $c = 6.059 \pm 0.002$ Z = 4 $D_m = 1.22$ g.cm ⁻³ E(000) = 496	M.W. 232.33 Space group <i>Fmm2</i> $\lambda(Cu \ K\alpha_1) = 1.54051 \text{ Å}$ $\lambda(Cu \ K\alpha_2) = 1.54433$ $\lambda(Cu \ K\alpha) = 1.5418$ $\mu = 5.34 \text{ cm}^{-1}$ (for Cu K α) $\mu = 0.75$ (for Mo K α) $D_x = 1.239 \text{ g.cm}^{-3}$ V = 1245.55 Å 3
F(000) = 496	$V = 1245.55 \text{ Å}^3$

For the determination of the structure, intensity data were collected on a Philips equi-inclination linear diffractometer (PAILRED) in the automatic mode, using the ω -scan technique. Mo K α radiation [monochromated by a graphite (0001) single crystal] and a scintillation detector with pulse height analyser were used. The scan range varied from ± 0.5 to $\pm 1.2^{\circ}$ (the larger values being used in the higher layers for low values of the Y angle). The scan speed was 0.5° . min⁻¹; background counts were taken for 100 to 240 sec at both ends of the scan, with crystal and counter stationary. Scanning was automatically repeated for each reflexion (up to a maximum of three times), until the number of scan counts reached the value of at least 1000. The layers 0 to 7 about the c axis, the 3kl layer and three 00lreflexions for the 0kl layer were collected from two

^{*} We thank Professor Emanuel Vogel for supplying crystals of the substance.

crystals with diameters of about 0.3 mm. In total, 424 reflexions were measured and corrected for Lorentz and polarization factors. Of these, 23 were so weak that the background exceeded peak intensity: in such cases, the reflexion was assigned a value of zero. Since the X-ray tube had to be changed during data collection, and the data came from different crystals, the reflexions as collected were grouped into three sets. The evaluation of relative scale factors for these sets and the subsequent averaging of the observed F^2 values were performed according to the method proposed by Rollett and Sparks, modified to account for

the dependence of the weights upon the final scale factors (Hamilton, Rollett & Sparks, 1965; Duchamp, 1964).

Determination and refinement of the structure

Because of the nature of the space group and the small number of molecules per unit cell, there are few possibilities for a plausible structure, and determination *a priori* of a possible model was attempted. To this purpose, the geometry of an isolated molecule of BUT was calculated by means of an empirically extended Westheimer method (Westheimer, 1956; Casalone,

Table 2. Observed and calculated structure factors

All F values have been multiplied by 10. Reflexions omitted from the least squares are indicated by an asterisk. Form factors for carbon atoms were taken from Cromer & Waber (1965) and for H atoms from Stewart, Davidson & Simpson (1965).

ĸı	FO	FC P4I	ĸL	۴u	FC PHI	ĸL	FO	FC PHI	ĸL	FO	FC PHI	ĸL	FO	FC PHI	K L	F 0	FC PHI	× L	FO	FC PHI	K L	FO	FC PHI
H C 4 D 6 2 2 2 4 2 6	= 0 1233 225 317 1294 279 196 176	1459 280 233 173 315 6 1397 C 234 203 199 154 186 5	2 0 2 2 4 2 2 6 3 2 4 4 4 6 4 4 6 4 6 0 4 6 0 8 4 6 6 8 4	108 266 171 92 49 479 343 113 355 256 185	105 0 263 39 175 226 99 77 48 180 441 183 338 169 114 102 374 0 261 231 193 191	4 6 6 2 6 4 6 8 8 2 8 4 7 6 10 2	196 34 195 104 34 144 51 80 40 40 99	188 85 32 (* 201 329 102 340 36 263 155 180 51 50 79 357 38 213 45 180 97 225	8 6 16 0 10 2 10 4 12 0 12 2 12 4 14 0	112 284 132 92 45 44 38 63	106 150 287 180 133 178 88 135 48 180 40 306 39 351 67 0	1 1 1 3 1 5 1 7 3 1 3 3 3 5 3 7 5 1	171 200 167 31 96 74 90 67 268	152 277 211 234 172 176 30 149 86 441 75 72 92 74 68 25 271 337 79 331	93 95 111 113 H =	33 49 77 79 12 34 378	28 162 43 192 75 340 74 205 29 C 375 62	6 2 6 4 8 0 8 2 8 4 10 0 10 2 H =	96 72 148 0 44 77	102 174 66 206 161 0 28 290 3 254 46 0 71 70	C 2 2 4 0 2 4 0 2 0 7	138 148 46 41 39 89 49 26 80 0	136 331 156 180 41 5 40 354 42 186 91 260 50 122 24 0 86 285 19 180
4 0 4 2 4 4 6 6 6 2 6 4 6 6 8 0 8 2 8 4 10 0	657 831 279 35 106 76 390 96 378 164 187 94 95	639 180 763 142 271 172 37 189 113 0 67 208 406 215 101 162 357 0 144 341 182 225 90 57 93 0	6 6 8 0 8 2 8 4 8 6 10 0 10 2 10 4 12 2 12 4 14 0 14 2	18 317 104 39 76 134 0 63 89 26 41 0 35	26 249 308 0 89 272 43 157 139 0 5 186 69 105 96 0 34 301 40 215 13 0 27 218	10 4 12 0 12 2 12 4 14 0 14 2 H = 1 1 1 3 1 5	101 53 88 0 31 5 648 123	100 146 58 0 87 281 26 195 3 0 34 344 634 253 128 158	1 1 1 3 1 5 1 7 3 1 3 3 3 5 3 7 5 1 5 3 5 5 5 5	301 317 248 103 414 337 120 0 242 312 177	300 239 319 253 257 162 100 167 402 150 331 25 120 40 3 180 232 330 307 2 173 16	5 5 7 1 7 3 7 5 9 1 9 3 9 5 11 1 11 3 13 1	92 231 110 32 136 134 78 77 39 98	93 36 93 36 223 321 107 251 32 135 136 190 131 165 80 137 69 177 41 160 97 340	00222244460240	245 218 19 204 31 71 0 162 138 0 59 158 73	204 378 200 287 18 0 208 92 47 287 69 305 29 180 163 143 146 180 16 76 60 180 157 100 72 274	1 1 1 3 3 1 3 3 5 1 5 3 7 1 7 1 9 1	352 112 82 151 124 24 123 106 86 106 120 65	359 333 3111 245 73 41 160 158 129 136 24 70 125 169 107 178 713 314 110 252 67 17	8 2 H = 1 1 3 1 3 3 5 1 5 3 7 1	28 19 131 62 30 92 40 26	25 279 140 150 134 355 58 239 34 303 92 294 39 327 37 268
10 2 10 4 12 0 12 2 12 4 14 0 14 2 H =	157 60 70 45 48 63 77 1	163 66 56 11 74 0 45 60 42 254 61 0 75 223	H = 1 1* 1 3 1 5 1 7 3 1 3 3 3 5 3 7	3 1 J 22 6 9 7 2 4 8 5 9 3 2 6 1 0 6 1 2 4 7 6	1029 113 691 7 262 280 62 201 317 163 111 144 112 140 7 3 75	1335713571357135	188 400 61 215 0 100 312 73 20 148 336	184 222 380 259 64 144 209 78 17 43 90 335 299 349 80 29 16 327 149 127 321 354 87 283	7 1* 7 3 7 5 9 1 9 3 9 5* 11 1 11 3 13 1	343 163 82 218 169 140 165 49 83	332 310 166 274 86 105 216 210 167 175 141 123 161 178 45 115 84 331	H = 0 0 0 4 0 6 2 0 2 4 2 6 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 2 4 4 0 4 0 2 4 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4	10 21 127 34 188 0 159 92 81 73 63	21 0 118 163 37 27 184 272 4 0 164 156 92 90 82 300 74 0 68 98 93	8 0 8 2 8 4 10 0 10 2 10 4 12 0 12 2 H =	17 141 61 78 39 0 65 21 13	15 180 137 87 62 322 75 0 38 103 21 130 66 0 20 55	9 3 11 1 H = 0 0 0 2 0 4 2 0 2 2 2 4	40 59 10 408 237 79 43 53 98	42 355 50 91 420 0 242 287 77 44 41 0 56 213 97 57	H = C 0 0 2 0 4 2 0 2 2 4 0 4 2 6 0 6 2	20 65 66 21 12 87 57 78 0 77	69 160 60 236 23 126 20 180 75 249 50 0 75 290 26 0 68 339
1 3 1 5 1 7 3 1 3 3 3 5 3 7 5 1 5 3 5 5 5 7 7 1	61 247 94 1200 516 133 48 631 278 190 109 223	59 44 263 328 102 328 1161 135 481 107 144 304 44 202 574 139 249 145 196 246 110 192 209 36	5 5 5 5 7 1 7 5 7 7 7 5 9 1 9 5 1 1 3 9 5 1	134 129 0 49 21 122 148 44 90 76 40 20	139 258 131 175 12 101 44 230 23 303 117 45 172 318 34 169 92 91 78 12 36 304	9 1 9 5 11 1 11 3 13 1 13 3 H =	234 37 90 103 26 58 79	235 168 26 44 90 149 96 199 28 204 52 321 75 336	0 U 0 2 4 0 6 2 2 2 4 2 6 4 0 2 4 2 6 2 2 4 0 2 4 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6	424 185 287 274 859 311 109 129 275 307	410 180 176 252 291 228 267 167 828 180 299 84 115 326 121 170 275 180 308 56	4 6 6 0 6 2 6 4 6 6 8 0 8 2 8 9 10 0 10 2 10 4	60 0 180 145 79 183 166 86 148 111 30	55 6 55 6 25 0 175 38 139 314 76 265 193 180 172 83 85 305 146 180 111 119 26 174	1 1 3 5 1 3 5 5 5 5 7 7 7 7 7 7	273 160 115 106 156 21 232 83 127 131 35	284 40 162 331 111 261 113 109 164 179 102 168 23 196 23 4 182 80 182 131 335 124 194 36 273	4 0 4 2 4 4 6 0 6 2 6 4 8 0 8 2 10 0 10 2	241 157 39 69 0 72 0 74 61 88	254 180 155 142 37 81 72 160 21 317 74 251 6 180 75 7 60 180 77 63	H = 1 1 1 3 3 1 3 3 5 1 H =	21 88 85 21 42 35 22	88 259 85 176 19 226 38 73 41 54
7 3 7 5 9 1 9 3 9 5 11 1 11 3 11 5 13 1 13 3	114 156 174 115 115 135 112 102 26 18	103 272 163 254 170 58 123 46 114 338 138 92 126 51 102 329 28 69 25 209	11 5 13 1 13 3 H = 0 0 0 2 0 4 0 6	30 0 39 4 443 167 229 129	33 73 14 26 33 327 444 160 157 24 224 341 129 238	0 2 4 0 0 2 2 4 2 0 2 2 4 4 0 2 4 4 4 4 4	754 212 140 379 320 173 64 119 162 270 67	756 243 220 146 136 185 381 186 295 230 179 85 66 141 118 180 163 0 292 23 62 47	4 6 6 2 6 4 6 0 8 2 8 4 8 6 10 2	84 383 307 119 59 79 212 108 30 258 188	81 327 392 0 308 312 124 7 59 327 81 0 210 241 107 136 32 155 253 180 187 163	H = H = 1 1 1 3 1 5 3 1 3 3 3 5	11 251 153 81 272 317 143	246 334 246 334 158 169 85 330 256 316 314 185 139 121	93 111 H = 00 02 04 06 20	14 307 264 167 80 52	317 0 281 8 182 302 80 337 54 180	1 1 1 3 1 5 3 1 3 5 5 1 5 3 7 1 7 3	81 84 40 106 0 59 64 51 47 73	91 305 83 340 40 21 111 189 20 115 59 107 63 212 47 264 37 312 81 317	0 0 0 2 2 0 2 2 4 0 H = 1 1	83 124 0 50 0 23 52	77 0 119 233 16 0 42 201 3 0 47 118
н = 0 0• 0 2• 0 4• С 6	2 883 917 342 51	924 0 971 2 376 282 52 2	2 2 4 2 4 4 4 4	330 117 102 237 465 235	14 0 308 252 119 126 99 107 225 0 432 271 235 150	6 U 6 4 6 6 8 0 8 2 8 4	106 358 224 25 167 80 0	113 0 357 342 235 338 20 178 17C 180 81 288 26 234	10 4 12 0 12 2 14 0	96 49 34 65	93 105 99 180 30 22 77 0	5 1 5 3 7 1 7 3 7 5	116 122 80 136 70 120	121 354 131 209 86 173 142 90 70 354 116 255	2 2 2 4 2 6 4 0 4 2 4 0	197 72 49 255 273 44	195 75 75 308 42 328 262 180 288 134 48 152	91 H=	0 18 194	16 164 193 180			

Table 3. Heavy atom parameters and their standard deviations

All the values in this table have been multiplied by 104.

The temperature factor is in the form exp $[-(B_{11}h^2 + B_{22}k^2 + B_{33}l^2 + 2B_{12}hk + 2B_{13}hl + 2B_{23}kl)]$.

	x	v	Z	B_{11}	B22	B 13	B12	B 13	B23
C(1)	691 (1)	1033 (2)	-9(5)	26 (Ì)	61 (1)	157 (4)	-7(1)	-4(1)	-9(2)
C(2)	1327 (1)	1360 (2)	-1253(5)	30 (1)	92 (2)	231 (6)	-17(1)	-4(1)	21 (3)
C(3)	1894 (1)	622 (2)	-1786(5)	23 (0)	138 (3)	253 (6)	-12(1)	7 (2)	9 (4)
C(14)	0 (0)	1523 (2)	- 496 (0)	30 (1)	49 (2)	168 (6)	0 (0)	0 (0)	6 (2)
C(15)	808 (1)	0 (0)	1498 (6)	22 (1)	74 (2)	148 (6)	0 (0)	-9(2)	0 (0)
C(16)	421 (2)	0 (0)	3723 (6)	36 (1)	86 (2)	113 (5)	0 (0)	-10(2)	0 (0)

Mariani, Mugnoli & Simonetta, 1968). In these calculations, at the starting point, the molecule was assumed to have point-group symmetry 2 (C_2), and all bond lengths in the ring were taken as 1.397 Å. The energy was obtained as the sum of contributions due to π -electron, stretching, bending, torsional and nonbonded interactions, using the same procedure and parameters as for 1,6:8,13-propane-1,3-divlidene[14]annulene (here onwards PAN) (Gavezzotti, Mugnoli, Raimondi & Simonetta, 1972). The 'theoretical' molecular model corresponds to a minimum of energy, as a function of eleven internal degrees of freedom of the C-atom skeleton.[†] Standard values were assumed for the C-H bond lengths and the directions of these bonds were determined by orthogonality conditions for the hybrid carbon orbitals.

The minimum-energy geometry was found to correspond to mm^2 symmetry, leading to an eclipsed conformation for the contiguous CH₂ groups.

In view of the symmetry of the molecular model, the number of molecules Z in the unit cell, and the nature of special positions in *Fmm2*, *Fmmm*, and *F222* (see *International Tables for X-ray Crystallography*, 1952), only the first space group was possible. The problem, therefore, was to find which axis was polar (*i.e.* whether the space group had to be written as *Fmm2*, *Fm2m* or *F2mm*); for each of these possibilities we had to check two orientations of the molecule, turned at 90° from each other, and both with one crystallographic axis perpendicular to a given plane of symmetry of the molecule.

For these reasons, six orientations of the molecule were possible; for each, the packing energy was readily calculated using Bartell's (1960) functions. For one situation the packing energy was decidedly reasonable $(-2.5 \text{ kcal. mole}^{-1})$; for all the others some contacts

[†] The two extra degrees of freedom with respect to those considered in the calculations for PAN are the bond length C(16)-C(17) and the torsion angle around this bond.

Fig. 1. The molecule of BUT showing the temperature ellipsoids of the carbon atoms. Hydrogen atoms, treated as isotropic, are on an arbitrary scale; in the present work, they are indicated by the same number as the carbon atoms to which they are bonded.

were too short to be admissible. Using the 'theoretical' molecular model, oriented as suggested by these packing energy considerations, a structure factor calculation on all reflexions with $\sin^2 \theta / \lambda^2 \le 0.20$ gave an *R* index of 0.24.

Refinement of the structure was performed by fullmatrix least squares, using a program written by Busing, Martin & Levy (1962), minimizing the function $\sum w(|F|_{obs} - |F|_{cal})^2$, with weights $w = 1/f^2$, where f is the average scattering factor for all the atoms at the calculated value of $\sin \theta / \lambda$. In the first three cycles, performed on those reflexions for which $I \ge 2\sigma(I)$, only the carbon atoms were considered, with isotropic temperature factors; the R index dropped to 0.125. After these cycles, anisotropic temperature factors were assigned to the carbon atoms: the hydrogen atoms were included in the structure factor calculations with a temperature factor B of 4 Å² (for four atoms, whose coordinates were deduced from a three-dimensional difference Fourier) or 5 Å² [for H(2) and H(5), whose coordinates were taken from the 'theoretical' molecular model]. After three additional cycles of least squares. performed minimizing the same expression as before with the same weights and the same reflexions, the Rindex dropped to 0.049.

At this stage hydrogen atom parameters were also considered in the refinement, and three final cycles of least squares were computed. Here, all the measured reflexions were included, with the exception of 17, for which either the effects of secondary extinction were evident ($F \ge 90$), or some substantial disagreement was found between different observations during our data reduction. All these reflexions are marked by an asterisk in the structure factor table. Owing to the fact that different crystals were used, no secondary extinction coefficient was considered in the refinement.

In these final cycles, weights were assigned as w = $1/\sigma^2(F)$, where $\sigma(F)$ was taken as $\sigma(F^2)/2F$ and computed from $\sigma^2(F^2) = \sigma^2_{cs}(F^2_o) + (AF^2_o)^2$. Here, $\sigma^2_{cs}(F^2_o)$ is the counting statistical variance and A an empirical parameter, which was chosen so as to make $w(\Delta F)^2$, the mean quadratic error, approximately constant over the entire range of $|F_o|$'s (Peterson & Levy, 1959; Cruickshank & Pilling, 1961; Albano, Bellon, Chini & Scatturin, 1969). During our choice of the empirical parameter A, the reflexions were divided into three groups, each containing the same number of data. The value of A(=0.11) which gave the best results from this point of view [constancy of $w(\Delta F)^2$ within 6.5% of the average] gave also a reasonable 'goodness of fit' $s = \sqrt{\left[\sum w(\Delta F)^2/n - p\right]} = 1.18$, a result which induced us to consider this scheme of weighting with particular favour.

After three cycles, the *R* index was reduced to 0.045 for the reflexions included in the least-squares calculations and reasonable shifts were found for all the hydrogen atom parameters. At the end of the refinement, no shift in either the atomic coordinates or the temperature factors exceeded $\frac{1}{20}$ of the corresponding

Table 4. Parameters for the hydrogen atoms

	x	у	z	10 B(Å ²)
H(2)	0.135(1)	0.214 (2)	-0·189 (7)	66 (7)
H(3)	0.236(2)	0.094 (2)	-0.241(7)	65 (6)
H(14)	0.000 (0)	0.208(2)	-0.155 (8)	40 (7)
H(15)	0.135 (1)	0.000(0)	0.195 (6)	45 (6)
H(16)	0.064 (1)	0.068 (2)	0.452 (4)	53 (7)

standard deviation, with the exception of *B* for H(15), whose shift was $\frac{1}{10}$ of the corresponding σ . Owing to the small shifts in the atomic coordinates, the goodness of fit decreased slightly (to 1·10), the final value being then considered as satisfactory. A general view of the molecule is given in Fig. 1.

Precision of the results

The observed and calculated structure factors are listed in Table 2; the final parameters of the heavier atoms are given in Table 3 and of the hydrogen atoms in Table 4.

The standard deviations in the coordinates of the heavier atoms, derived from the residuals and the diagonal elements of the inverse matrix of the final least-squares cycle, correspond to positional uncertainties of the order of 0.003 Å for the carbon atoms and 0.03 Å for the hydrogen atoms. The corresponding standard deviations in the bond distances involving only heavier atoms are about 0.004 Å and in the angles

about 0.3° ; in the C-H bonds they are about 0.03 Å and in the angles involving H-atoms they are about 2° .

Corrections for thermal libration

A molecule such as BUT was expected to behave as a rigid body in undergoing thermal libration. Accordingly, the tensors **T,L,S** (Schomaker & Trueblood, 1968) were derived from a least-squares treatment, using a FORTRAN IV program written by Dr Giuseppe Filippini. In these calculations, equal weights were assigned to all thermal factors; owing to the mm2 crystallographic symmetry of the molecule, the off-diagonal components of **T** and **L** and all components of **S**, except S_{12} and S_{21} were bound to be zero. The agreement between observed and calculated B_{ij} values was good, only the values for B_{11} of C(5) differing by slightly more than three times the standard deviation.

The mean square rotational displacements of BUT amount to 15,13 and 7 (°)² about the principal axes of the tensor **L**.

Bond distances and angles involving C atoms are reported in Table 5; values in the third column include corrections for thermal motion. For this purpose, corrections were derived from the formula proposed by Schomaker & Trueblood (1968), using the rigid-body parameters of Table 6. Corrections to the bond angles are very small (less than 0.05°) and have been neglected.

Table 5. Bond distances and angles

]	Data for BUT (t	his work)	Avera	age for PAN
C(1)-C(2) C(2)-C(3) C(3)-C(4) C(14)-C(1) C(1)-C(15) C(15)-C(16) C(16)-C(17)	Uncorrected for thermal libration 1·422 Å 1·362 1·418 1·397 1·505 1·518 1·519	Corrected 1·428 Å 1·368 1·424 1·402 1·511 1·523 1·525	'Theoretical 1·397 Å 1·397 1·397 1·397 1·474 1·531 1·493	Corrected thermal libration 1·413 Å 1·387 1·414 1·395 1·517 1·518 not corr	'Theoretical 1·397 Å 1·397 1·397 1·397 1·487 1·533 aparable
		Data for (Correction for thermal libration negligible)	or BUT	Data fo	or PAN
C(14)-C(1)-C(2) $C(1)C(2)C(3)$ $C(2)C(3)C(4)$ $C(6)C(7)C(8)$ $C(2)C(1)C(15)$ $C(14)-C(1)C(15)$ $C(1)C(15)-C(16)$ $C(15)-C(16)-C(17)$ $C(1)C(15)-C(6)$		Experimental 120·2° 124·7 128·1 126·2 114·4 124·5 118·3 117·4 102·9	'Theoretical' 120.6° 122.5 129.1 120.8 115.1 124.3 117.7 116.2 105.8	Experimental 124.0° 121.5 127.9 121.5 119.2 116.6 111.2 not compart 104.3	'Theoretical' 124·1° 118·6 127·5 118·6 119·7 116·2 110·6 rable 105·8
C(1)-C(1)-C(0) Torsion angles C(14)-C(1)-C(2)-C(C(1)-C(2)-C(3)-C(C(13)-C(14)-C(1)-C(1)-C(1)-C(1)-C(1)-C(1)-C(1)-C(1	3) 4) 2)				- 162·7° 25·5 158·1

Distances and angles involving the hydrogen atoms (uncorrected for thermal libration) are shown in Table 7. Torsion angles are reported in Table 5; signs for these angles are given following the convention proposed by Klyne & Prelog (1960); the standard deviations were calculated according to Huber (1961).

Discussion

In agreement with its chemical behaviour, the molecule of BUT clearly shows an aromatic character, the C-C bond distances along the annulene perimeter varying from 1.371 to 1.422 Å, a range which is narrower than that found for anthracene (1.366-1.433 Å).

Of these bond distances, each one is virtually identical (see Table 6) with the average of the corresponding bond distances, as found in PAN (assuming molecular symmetry *mm*² also for the latter). This confirms the

Table 6. Rigid-body tensors for BUT

The tensors are referred to a Cartesian coordinate system, with the same orientation as the crystallographic axes. All

C(1)---H(2) $x, \frac{1}{2} - y, \frac{1}{2} + z$ values have been multiplied by 104. C(2)—H(2) C(2)—H(16) $x, \frac{1}{2} - y, \frac{1}{2} + z$ $T(Å^2)$ 0 369 (8) Ω х, y, z-1326 (10) 0 ('unreduced') C(3) - H(3)ł $y, z - \frac{1}{2}$ -x, C(3)—H(3) C(3)—H(16) C(14)–H(14) 203 (10) $y, \frac{1}{2} + \bar{z}$ ł -x, L(rad²) 0 0 y, z-139 (4) x, 23 (1) 0 $x, \frac{1}{2}$ $-y, \frac{1}{2}+z$ $\begin{array}{c} x, \ \frac{1}{2} - y, \ z - \frac{1}{2} \\ x, \ y, \ z - \frac{1}{2} \end{array}$ 48 (2) H(2) - H(16)H(3)—H(15) H(14)–H(16) S(Å. rad) 0 -4 (4) 0 $\frac{1}{2}-x$, 17 (2) 0 0 $x, \frac{1}{2}-y, z-\frac{1}{2}$ 0 0 H(14)-H(16)

Table 7. Bond distances and angles involving hydrogen atoms (uncorrected for thermal libration)

C(2)—H(2) C(3)—H(3) C(14)–H(14)	0·97Å 1·00 0·90	C(15)-H(15) C(16)-H(16)	1∙02 Å 0∙99
C(1)C(2)H(2)	119°	C(1)C(15)H(15)	107°
C(3)-C(2)-H(2)	116	C(16) - C(15) - H(15)	102
C(2)-C(3)H(3)	120	C(15) - C(16) - H(16)	105
C(4) - C(3) - H(3)	111	C(17) - C(16) - H(16)	113
C(1)-C(14)-H(14)	116	H(16) - C(16) - H(16')	103

Table 8. Some planes of interest

Because of the nature and special symmetry of the molecule, the atoms in all these planes are strictly coplanar, even if there are more than three. The coefficients q_i are the direction cosines relative to the crystallographic axes a, b, and c.

Plane	q_1	q_2	q_3	D
A [C(2)-C(3)-C(4)-C(5)]	-0.3015	0.0000	-0.9535	-0.002 Å
B [C(1)-C(2)-C(5)-C(6)]	0.5489	0.0000	0.8359	-0.679
C [C(1)-C(6)-C(7)-C(14)]	0.2304	0.0000	-0.9731	-0.292
D [C(1)-C(6)-C(15)]	0.9742	0.0000	-0.2258	-1.215
C' [C(7)-C(8)-C(13)-C(14)]	-0.2304	0.0000	-0.9731	-0.292

Dihedral angles

	BU	JT	PAN			
	Experimental	'Theoretical'	Experimental	'Theoretical'		
$\mathbf{A} \wedge \mathbf{B}$	164 ·3 °	165·2°	16 2 ·4°	158·2°		
$\mathbf{B} \wedge \mathbf{C}$	133-4	140.8	139.6	144.3		
$\mathbf{B} \wedge \mathbf{D}$	110.2	109.7	114.4	113.8		
$\mathbf{C} \wedge \mathbf{D}$	116-4	109.5	106.0	101-9		
C∧C′	153-4	168.0	148.6	158-9		

With respect to PAN, the strain connected with the presence of a further carbon atom in the aliphatic chain seems to affect bond angles much more than bond lengths, the observed variation from PAN to BUT being fairly consistent with theoretical results (see Tables 5 and 8).

Molecular packing

If we assume as van der Waals radii for carbon and hydrogen the values 1.7 and 1.5 Å respectively, we see that only in a few cases do two atoms belonging to different molecules lie at a distance smaller than the sum of the corresponding van der Waals radii (see Table 9).

Table 9. Intermolecular contact distances

(Uncorrected for thermal libration.)

 $-x, \frac{1}{2}$

 $-y, \frac{1}{2}+z$

3∙05 Å

3.15

2.95

3.68

2.99

3.19

2.87

2.93

2.58

2.87

2.87

References

- ALBANO, V., BELLON, P. L., CHINI, P. & SCATTURIN, V. (1969). J. Organometal. Chem. 16, 461.
- BARROW, M. J. & MILLS, O. S. (1971). Chem. Commun. p. 220.
- BARTELL, L. S. (1960). J. Chem. Phys. 32, 827.
- BUSING, W. D., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS. Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- CASALONE, G. L., GAVEZZOTTI, A., MUGNOLI, A. & SI-MONETTA, M. (1970). Angew. Chem. Int. Ed. 9, 519.
- CASALONE, G. L., MARIANI, C., MUGNOLI, A. & SIMONETTA, M. (1968). *Mol. Phys.* 15, 339.
- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104.
- CRUICKSHANK, D. W. J. & PILLING, D. E. (1961). In Computing Methods and the Phase Problem in X-ray Crystal Analysis. Paper No. 6. Oxford: Pergamon Press.
- DUCHAMP, D. J. (1964). ACA Meeting, Bozeman, Montana, Paper B-14, p. 29.
- GANIS, P. & DUNITZ, J. D. (1967). Helv. Chim. Acta, 50, 2369.
- GAVEZZOTTI, A., MUGNOLI, A., RAIMONDI, M. & SIMONET-TA, M. (1972). J. Chem. Soc. Perkin II, p. 425.

- GRAMACCIOLI, C. M., MIMUN, A., MUGNOLI, A. & SIMO-NETTA, M. (1971). Chem. Commun. p. 796.
- GRAMACCIOLI, C. M., MUGNOLI, A., PILATI, T., RAIMONDI, M. & SIMONETTA, M. (1971). Chem. Commun. p. 973.
- HAMILTON, W. C., ROLLETT, J. S. & SPARKS, R. A. (1965). Acta Cryst. 18, 129.
- HUBER, P. J. (1961). Helv. Chim. Acta, 44, 2032.
- International Tables for X-ray Crystallography (1952). Vol. I. Birmingham: Kynoch Press.
- KLYNE, W. & PRELOG, V. (1960). Experientia, 16, 521.
- PETERSON, S. W. & LEVY, H. A. (1957). Acta Cryst. 10, 70.
- SCHOMAKER, V. & TRUEBLOOD, K. N. (1958). Acta Cryst. B24, 63.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1955). J. Chem. Phys. 42, 3175.
- VOGEL, E., BISKUP, M., VOGEL, A., GÜNTHER, H. (1966). Angew. Chem. Int. Ed. 5, 734.
- VOGEL, E., GÜNTHER, H. (1967). Angew. Chem. Int. Ed. 6, 385.
- Vogel, E., Vogel, A., KÜBBELER, H. K. & STURM, W. (1970). Angew. Chem. Int. Ed. 9, 514.
- Vogel, E., Sturm, W. & CREMER, H. D. (1970). Angew. Chem. Int. Ed. 9, 516.
- WESTHEIMER, F. H. (1956). Steric Effects in Organic Chemistry, chap. 12. Edited by M. S. NEWMAN. New York: Wiley.

Acta Cryst. (1972). B28, 2370

The Crystal Structure of β-D-Galactosamine Hydrochloride

By Mitsuo Takai and Sadayoshi Watanabe

Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan

and Tamaichi Ashida and Masao Kakudo

Institute for Protein Research, Osaka University, Kita-ku, Osaka, Japan

(Received 8 October 1971 and in revised form 10 February 1972)

The crystal structure of β -D-galactosamine hydrochloride has been determined from three-dimensional intensities obtained with Cu K α radiation. The needle-shaped crystals are orthorhombic, space group $P2_12_12_1$, with eight molecules in a unit cell of dimensions a = 9.794, b = 19.686 c = 9.385 Å. The final R index is 0.045 and the e.s.d.'s of the coordinates of C, N and O atoms are about 0.005 Å. Bond lengths and angles in galactosamine are very close to those of similar compounds already reported. The galactosamine ring has the normal Sachse *trans* configuration with 1e2e3e4a5e.

Introduction

D-Galactosamine (2-amino-2-desoxy-D-galactose or chondrosamine) is one of the important amino-sugars. It is a constituent of complex polysaccharides, glucoprotein of mucoid, mucin and chondroitin sulphate. In most of these compounds, D-galactosamine cccurs together with glucosamine. The crystal structures of α -D-glucosamine hydrochloride and hydrobromide have been determined by Chu & Jeffrey (1965). In this structure, the glucopyranose ring has the normal Sachse *trans* configuration with lower energy conformation 1a2e3e4e5e. The preliminary studies on β -Dgalactosamine hydrochloride have been reported by Werner (1952). The crystal structure, however, was still undetermined. In view of its relation to other pyranose sugars and biochemical interest, it was of interest to determine the conformation of the galactopyranose ring in this compound.

Experimental

The crystals of β -D-galactosamine hydrochloride were recrystallized from aqueous acetone solution. They are